2,003 research outputs found

    Metastable behavior of vortex matter in the electronic transport processes of homogenous superconductors

    Get PDF
    We study numerically the effect of vortex pinning on the hysteresis voltage-temperature (V-T) loop of vortex matter. It is found that different types of the V-T loops result from different densities of vortex pinning center. An anticlockwise V-T loop is observed for the vortex system with dense pinning centers, whereas a clockwise V-T loop is brought about for vortices with dilute pinning centers. It is shown that the size of the V-T loop becomes smaller for lower experimental speed, higher magnetic field, or weak pinning strength. Our numerical observation is in good agreement with experiments

    Silicon spin diffusion transistor: materials, physics and device characteristics

    No full text
    The realisation that eaveryday electronics has ignored the spin of the carrier in favour of its charge is the foundation of the field of spintronics. Starting with simple two-terminal devices based on GMR and tunnel magnetoresistance, the technology has advanced to consider three-terminal devices that aim to combine spin sensitivity with a high current gain and a large current output. These devices require both efficient spin injection and semiconductor fabrication. In this paper, a discussion is presented of the design, operation and characteristics of the only spin transistor that has yielded a current gain greater than one in combination with reasonable output current

    Weak force detection with superposed coherent states

    Get PDF
    We investigate the utility of non classical states of simple harmonic oscillators, particularly a superposition of coherent states, for sensitive force detection. We find that like squeezed states a superposition of coherent states allows displacement measurements at the Heisenberg limit. Entangling many superpositions of coherent states offers a significant advantage over a single mode superposition states with the same mean photon number.Comment: 6 pages, no figures: New section added on entangled resources. Changes to discussions and conclusio

    MEK1 drives oncogenic signaling and interacts with PARP1 for genomic and metabolic homeostasis in malignant pleural mesothelioma.

    Get PDF
    Malignant pleural mesothelioma (MPM) is a lethal malignancy etiologically caused by asbestos exposure, for which there are few effective treatment options. Although asbestos carcinogenesis is associated with reactive oxygen species (ROS), the bona fide oncogenic signaling pathways that regulate ROS homeostasis and bypass ROS-evoked apoptosis in MPM are poorly understood. In this study, we demonstrate that the mitogen-activated protein kinase (MAPK) pathway RAS-RAF-MEK-ERK is hyperactive and a molecular driver of MPM, independent of histological subtypes and genetic heterogeneity. Suppression of MAPK signaling by clinically approved MEK inhibitors (MEKi) elicits PARP1 to protect MPM cells from the cytotoxic effects of MAPK pathway blockage. Mechanistically, MEKi induces impairment of homologous recombination (HR) repair proficiency and mitochondrial metabolic activity, which is counterbalanced by pleiotropic PARP1. Consequently, the combination of MEK with PARP inhibitors enhances apoptotic cell death in vitro and in vivo that occurs through coordinated upregulation of cytotoxic ROS in MPM cells, suggesting a mechanism-based, readily translatable strategy to treat this daunting disease. Collectively, our studies uncover a previously unrecognized scenario that hyperactivation of the MAPK pathway is an essential feature of MPM and provide unprecedented evidence that MAPK signaling cooperates with PARP1 to homeostatically maintain ROS levels and escape ROS-mediated apoptosis
    corecore